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Abstract—This study deals with the elastostatic problem of a penny-shaped crack in an elastic
matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An
elastic filament model is developed in the first paper. The second paper considers the applica-
tion of the model to the penny-shaped crack problem in which the filaments of finite length are
symmetrically distributed around the crack. The reinforcement problem for the cracked matrix
with elastic fibers of different diameter, modulus, and relative location is considered in the third
paper. Since the primary interest is in the application of the results to studies relating to the
fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis
of the study will be on the evaluation of the stress intensity factor along the periphery of the
crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the
filaments or fibers.

1. INTRODUCTION

The primary objective of this series of papers is to develop a technique by which, with a
reasonable amount of computational effort, one may obtain the solution of the three-
dimensional elasticity problem for a matrix containing a penny-shaped crack and reinforced
by elastic filaments or fibers perpendicular to the plane of the crack. Basically, the problem
is one of interaction between a macroscopic crack and filaments or fibers in a composite
medium. The problem finds its practical applications in the fracture studies of fiber or
filament reinforced composites and in reinforced concrete. Even though the existence of
such a crack has an effect on the vibration characteristics, the stiffness, and other mechanical
properties of the material, its main importance lies in the reduction it causes in the fracture
resistance of the structure. Hence, our primary attention will be concentrated on the calcula-
tion of such quantities as the distribution of the stress intensity factor along the periphery of
the crack, the filament-matrix shear stress and the maximum tensile stress in the filaments.

This first paper in the series will be devoted to the development of a model for an elastic
filament imbedded into an elastic matrix. The main requirements expected of the model are a
sufficiently accurate representation of the filament, and its applicability to the interaction
problems involving a cracked elastic continuum with multi-filament reinforcements. For a
sparsely reinforced matrix in which the interaction between the perturbed stress fields of the
isolated filaments and the crack is negligible, the solution given in [1] for an ellipsoidal
inclusion in an infinite matrix may be quite satisfactory provided the filament ends are
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rounded and there is no excessive concentration of interface shear. However, since the
filaments are usually cylindrical with sharp edges and since the technique described in [1]
cannot readily be expanded to interaction problems, the ellipsoidal inclusion model of [1]
is not suitable for the problem under consideration. A somewhat more appropriate model
for the present purpose would be that described in [2]. The model described in [2] would
give sufficiently accurate results for the tensile stress in the filament and for the stiffening
effect on the crack. However, its representation of the filament-matrix contact stresses
would not be sufficiently accurate. Partly for this reason and partly for reasons of con-
venience in solving the resulting integral equations, in this paper a somewhat different model
will be developed. The technique is based on a direct generalization of the notions discussed
in [3, 4], and will be described in the next section. Some numerical examples will then be
given and the results will be compared with those obtained from using the methods of
{1, 2].

2. SOLUTION OF THE GENERAL INCLUSION PROBLEM

Consider the three-dimensional inclusion problem shown in Fig. 1. Let the homogeneous,
isotropic elastic domains D, (the inclusions) which are bounded by nonintersecting smooth
surfaces S, (k =1, 2, ..., m) be perfectly bonded to the surrounding elastic medium D,
(the matrix). Let the bounding surface S, of D, be subjected to surface tractions T} (where
S, may be finite or infinite). Let the elastic constants of D, be y,, 4,. (k =0.1,.... m). The
problem may be formulated by writing the field equations for D, separaiely with the
boundary conditions on S, and stress and displacement continuity conditions on S;. ... S, .
This, however, requires the solution of an elasticity problem for the simple domains D,.. ...
D, as well as for the multiply-connected domain D, . The problem may also be considered as

Fig. 1. General inclusion geometry.

that of a simply-connected nonhomogeneous domain in which the elastic constants have
jump discontinuities along the surfaces Sy, .... S,,. This formulation requires the solution
of a problem in which the field equations have discontinuous coefficients. Aside from the
special case discussed in [1], neither one of these solutions is tractable. However, it can be
shown that the problem may be reduced to the solution of a system of integral equations

provided the Poisson’s ratios of the elastic domains Dy, Dy, ..., D, are assumed to be
equal. For certain geometries these integral equations may be solved numerically without
any difficulty.

Let D and S be the union of inclusion domains and their boundaries, respectively, i.c.

D=YD,, S=YS. (1



A penny-shaped crack in a filament-reinforced matrix—I. The filament model 787

Let u,, u, , u; be the components of the displacement vector in the nonhomogeneous medium
(Do + D + S). In the absence of body forces, the elastostatic boundary value problem may
be formulated as

pug 5+ A+ pu; =0, (x;€(D+ S+ Dy)), (2)
a,.,nj? =T, (x; € So), 3)
0= u(u;, ; + u; ;) + Ay 3055, (i,j=1273), (4)

where the discontinuous elastic constants are given by
U=, A=A, (x;eD,,r=0,1,...,m), (5)
n? is the outward normal and T is the traction vector on S, . In (2-4) as well as in the rest
of this paper the usual summation convention is used. Let
B=Ho+Au, =1+ AL (6)
Ap=p, — o, Al =1, — A, (x;eD,,r=1,...,m), (N
where Ap and AZ are assumed to be nonzero. With (6), (2) may be expressed as
Hoti, ;5 + (Ao + po)u;, ;i + [Apu; ;5 + (AL + Apu;, ;] =0,
(x;eDo+D+98);i=1,2,3). (8)
In (8) the quantity in brackets may be considered as a body force vector which, due to the
discontinuous nature of the coefficients A and g, is expected to be discontinuous across and

at the boundary S. Let 1 = 5(x;), (x; € S) be the distance along the normal » measured (in
outward direction) from the surface S. We may then define

Apr j;+ (AL + A, ;= Fi(x),  (x;€ D +S)

F"{F"(x’)’ e D> (92.b)
FTAT)I0 —0),  (xje8),

where, in general, T} is not equal to the boundary value F; . Using (9), (8) may now be
expressed as

Bol;, ;; + (Ao + to)u;, ji + F; + TPo(n — 0) =0, (x;€(Dg+D+8),i=1,2,3. (10)

On the other hand if we let Fi(x;) = F, (x;e D,) and Tix;) =T/, (x;€8,), (9) is
equivalent to
Auru;, Jji + (A/Ir + A:ur)u;', ji — F1' = 09 (xj € Dr)3
on=-T" (x;€8,),

[ A A
of = Apui ; +uj )+ Adug , 65,  (r=1,...,m;i,j=1,2,3). (lla—c)

Equation (10) with (3 and 4), and (11) give the formulation of m + 1 elasticity problems for
the simply-connected homogeneous domains (D, + S + D), D,, ..., D,, . In addition to dis-
placement components v; = u{ in (D + D + S) and « in the auxiliary inclusions D, with
the elastic constants Ay, and A4, (r=1, ..., m;i=1, 2, 3), the equations contain the
unknown functions F7 and T, (r=1, ..., m; i =1, 2, 3). The additional equations to
account for these unknowns may be obtained by considering the fact that the displacements
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on S are continuous and u; given by (11) are identical to u; given by (9, 8, or 10), namely
wi(x;) = uf(x,), (x;€ D,).
Wix) =ud(x),  (x;€8).  (r=L...mi=123). (12a,b)

Formally, 9m + 3 unknown functions }, v/, F}, T" may be obtained from 9m + 3 equa-
tions given by (10, 11a and 12) under the boundary conditions (3) (with 4) and (11b with
lic). If the Green’s functions for the domains (D, + D + S) (i.e. the simply connected
region bounded by S,) and S,, (r =1, ..., m) are known, this system of equations may
easily be replaced by a system of 6m 1ntegra1 equations for the unknown functions F/ and
TV, (i=1,2,3;r=1,..., m.

Let us now consider the field equations for the part D, of the homogeneous medium
(Do + D + S) in which u(x;) = u}(x,). This may be obtained from (10) as

2o 1 ,
u,“ (1+ ) i+ —F =0, (x;eDr=1,....m;i,j=12,3), (13)
Ho Ho
subject to the boundary conditions that g;; n = a"‘ 7 (x; € S,) where 67 is the limit of the

stress component obtained from the solution of (10) as X; approaches the boundary S, from
inside. From (13), (11a) and (12b) it is easily seen that

(;0 M) .,.+(—]—+i)Ff=0, (x;€D,). (14)
Ho  Ap, po  Au) T
From (14) it then follows that

Fi=0, if v,=v,. (x;€eDr=1,....m;i=123), (15)
where v, is the Poisson’s ratio of the elastic region D, (s =0, 1, . m). Thus, with the
assumption that v, =v,,(r =1, ..., m) the formulatlon of the problem may be considerably

simplified and may be summarized as
Ho Hi ji t (Ao + podu;, ;i + Y T o(n"—0) =0, (x;€(Dy + D +8)),
r=1

(uouf ; + uf ) + Aguyg  8;,1n9 = T, (x;€80), (16a,b)

Apul j; + (A4, + A ;; =0,  (x;€D,),
[Au i ; +uj ) + A S = =T, (x;€5,),  (17a,b)
uilx) =uf(x), (x;€S), (r=1,...,miij=1273). (18)

Again, if the Green’s functions for the regions D,, ..., D, for a concentrated stress vector
on the boundary and for (D, + D + S) for a concentrated internal body force are known,
(18) directly gives a system of two-dimensional integral equations for the unknown func-
tions T, (i=1,2,3;r=1, ..., m.

In the study of the mechanics of composite materials an important quantity of interest is
the magnitude of the contact stresses on the interfaces S;, ..., S,,. Once the layers of body
forces T, (r =1, ..., m) are determined, the contact stresses may easily be obtained from
the equilibrium considerations along the boundaries S;, ..., S,. Let 7, =0;;n; be the
components of the stress vector on the internal surface S, (S =) 7 S,) having the normal
(n), (i,j =1, 2, 3). Let 7} be the components of the contact stress vector on the interface S,
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having the outward normal #}. It is clear that
THxy) = 1 (x) = ot (xnix),  (x;€ 80, (19)

where the superscripts + and — refer to the boundary values of the related quantities as
the surface S" is approached from outside (the positive side) and from inside (the negative
side), respectively. The equilibrium considerations for the homogeneous region (Dg+ D + S)
subjected to the layer of body forcesT" on S,, (r =1, ..., m) and surface tractions 7" on
S, require that

0~ + T =0, (x,€S,;i=1,2,3;r=1,...,m). (20)

13

Also, from the solution of the problem for the simply-connected domain D, (see (17)) we
have

g-=djn=~T",  (%€S,). (1)
On the other hand, if v, = vy, (r =1, ..., m), using the equality of the displacements in
D,, u(x)) =ul(x;), (x;e D,, r =1, ..., m), from the stress displacement relations it may
easily be shown that

1 r 1 0 (
m oi(x) = e oi(x), (x,eD,,r=1,...,m), (22)

or

1 o — 1 0.
R = @), (yeD), (23)

Thus, from (19-21) and (23) the components of the contact stress vector on S, may be
obtained as

Hr

r V]

Ti(x) =17 (x)) = — T (x)), (x;€8,;i,j=1,2,3;r=1,...,m). (24

Once the problem for the m + 1 simply-connected domains is solved, noting that the
displacement components u;, (i = 1, 2, 3) in the actual inclusion with elastic constants A,
and y, are given by

ui(xj)zu?(xj)=u;(xj)s (ijDr;i3j=1529 3;r=1s"'5m)9 (25)
and (because of v, =v,, (r =1, ..., m))
A, Ay A4
bR Aw 29

the stresses in the actual inclusion may be expressed as

oix) = uu; ; +u; )+ 4, Up 3 0
= a{{(x) + o](xy), (xieDyr=1,...,m;i,jl=1,273), 27N
where a?j, (i, j =1, 2, 3) are the stress components in the matrix (D, + D + S) which has

.the elastic constants uq, A4, and 6%, (i,j =1, 2, 3) are the stress components in the auxiliary
inclusion D, with the elastic constants Ay,, Ak, (r =1, ..., m).
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Note 1. The results found in this section remain valid for the plane and axisymmetric

problems, with the additional simplification that for v, = vy, (r =1, .... m) the resulting
integral equations for the unknown functions T}, (i =1,2; r =1, ..., m) would be one-
dimensional.
Note 2. In the corresponding * antiplane shear’’ problem
u2=O=u3, u1,1=o, O'ij=[1u1’j, lel:O’ (j=2,3), (28)

and the results found in this section regarding the vanishing of the body forces F'; remain
valid without any restriction on the elastic constants g, (r =0, 1, ..., m). In this case
(16-18) and (24) (with (25)) give the exact solution. In this problem too the interface S,
may be represented by a closed plane curve and the resulting integral equations (for 77,
=1, ..., m) are one-dimensional, the arc length measured along S, being the variable.

3. THE FILAMENT MODEL

Let the filament be represented by a cylindrical inclusion of length 2¢, radius 7y, and the
elastic constants E,, v,. Let the elastic constants of the surrounding matrix be E, v. It is
assumed that

(@) vp=v;

(b) the dimensions of the matrix are large in comparison with c;

(c) the external load is the traction o,, = ¢, applied to the matrix away from and parallel
to the filament; and

(d) the length of the filament, 2¢, is large in comparison with its diameter 2r, . Thus, the
following basic relations for the infinite medium may be used in deriving the Green’s
functions for the matrix [5]:

Bx; — 1)

A
ui=;Xi+ s Y- tX, (i=1,2,3), (29)
1

3
pz = ; ('xi - Ti)zw

=(1+v)(3—4v) B 1+

, = ————, (30)
8nE(l — v) 8E(l — v)

where u;, (i = 1, 2, 3) are the components of the displacement vector at the point x; due to
the concentrated body forces, X acting at the point 7;, (j = 1, 2, 3), and x; and 7, refer to
the rectangular coordinates. If we deal with an axisymmetric problem in which, referred to
the cylindrical coordinates 7, 0, z, the body forces R, ©, Z are distributed over aringr =r,,
0 <0 <2z, z=1in such a way that ® =0 and R and Z are independent of 0, integrating
over the ring, from (29) the displacement components at a point (r = ry, 0 < 6 < 27, z) may
be obtained as

u,(ro , Z) = Kll(z9 t)R + K12(Z, t)Z, uz(ro ’ Z) = KZ](Z’ t)R + KZZ(Z’ t)Z’ u@ = 0’
(31 a~¢)
24 1+ 9)(t — 2)?
K (z,t) = ;— [2r0 + (——ll(—l

o]

] K(k)

0

A [po + L= z)Z)] Eh),

ro 0
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Kz 1) = —Ky(z, ) = — —2A—V(pt"—23 (K(k) — EO],
0
Koalz 1) = 4’;"’ K(K) + 7ER), (32a-0)
0
y=§=§—_1—4v, ph=4rt +(t — 2)%, kz%, (33)

where K(k) and E(k) are complete elliptic integrals of the first and the second kind, respec-
tively. A list of integrals used in the derivation of the kernels K;;, (i, j= 1, 2) may be found
in Appendix A. Similar expressions may be obtained for

u(r, ¥c), u(r, Fc) dueto R,Z at (ry, 1),

u(r, Fc), ulr. ¥c) dueto R,Z at (s, Fc)
and

ulro, z), ufre,z) dueto R,Z at (s, Fo),
where

0<(r,s)<ry, —c<(z,t)<c.

The filament model developed in this section will be used to study the stress state around
the leading edge of a penny-shaped crack in the matrix located in the z = 0 plane. Since
ro < ¢ and since the body forces R are locally self-equilibrating, the direct effect of R on the
stress intensity factors along the crack periphery will be negligible. However, since the
integral equations in R and Z will be coupled, the effect of R-Z may not be negligible. The
first example discussed in this section will be devoted to study the effect of neglecting R on
Z. For the sake of simplicity and in order to consider an extreme case, it will be assumed
that the inclusion is rigid and the end effects are negligible. Thus, if the uniaxial tension
6., = 0, is the external load applied to the matrix away from the inclusion region (see the
insert in Fig. 2), from (31) the integral equations of the problem may be expressed by
writing the displacement components along (r = r,, —¢ < z < ¢) equal to zero as follows:

n(ro,2) = =20 4 [ Kyt ORW + Kaalz, 020} dt = 0.

uz(rO s Z) = GL; + J.i [K21(Za t)R(t) + K22(27 t)Z(t)] dt = 0, (—C <z < C), (34)

where K;;, (i, j = 1, 2) are given by (32). A close examination of the kernels around z = ¢
would indicate that K, and K, have logarithmic singularities. This may be seen by observ-
ing that at z = ¢ E(k) is finite and for small values of |t — z| we have the following asympto-
tic relation:

K(k) = —log|t — z| + log 4p,
1(t —2)?

+_
4 pd

[—loglt — z] + logdpy — 1] +--- (35)
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Since the system (34) is of the first kind, it is equivalent to a system of singular integral
equations. In order to extract the correct behavior of the solution, it would be simpler to-cast
the system in the standard form with Cauchy-type singularities by formally differentiating
the equations. Thus, separating the singular parts of the kernels, (34) becomes

fc R(t) d¢

t—z

+ [ kus(z DR() di - if [oglt — z| + k,4(z, H]Z(1) dt = 0.
-c 2rO -

Z(t) dt

y c c
T | Doglt — 21 + kuz(e, IR d1 + [ 75

4n(l — v)a,

+ [ sz, 02 di = - T+9G-4)

(~c<z<c), (36)

where y = 1/(3 — 4v) and the bounded functions k; i, (i, j =1, 2) are given by

_2r0 aK(k)_ 1 ) 2rg —po - (1 +9)t — 2)* 0K(k)
kuale, 1) = Po ( 0z -z +p0(t~z)+ Yo Po 0z

t— 2(1 — z)?

+ ZK(k)[z—rZO— ( +V)+(1+v)(t2 Z)]
Po Po ro To Po
1 0E(k

- L ”[po+l{2ré+(r—z)2}]
ro 0z Po

+t_zE(k)[1 +2y—12{2rg+(t—z)2}],
o Po Po

kp(z, 1) = kyy (2, 1) = yp (2ro — po)log|t — z|
0

2rq

— L IK(k) +log|t — z|] + - E(k)
Po Po

+ y(tp— z) [K(K) — E(K)] + (it —z) [6K(k) _ 6E(k)] ,

g Po oz 0z
2r, [6K(k) 1 ] 2rg — po . 2rg(t — 2)
kyolz, 1) = 210 - + + K(k)
25 0= = T2 T = o) o3
2 t—
1 200 OBW) | 2roWE = 2) gy (37a-)
po Oz Po
oK(k) E(k) 1—z OE(k) t—:z , 472
=20 OBl - KW, k=t
oz t—z  pd K@), oz p? LECK) ()l ark +(t — z)?

(3%)

Referring to [6] it may be shown that the solutions of (36), R and Z, have integrable
singularities at Fc¢, the index of the system is ¥ = 1, and hence the general solution will
contain two arbitrary constants. On the other hand (36) states that the z-derivatives of the
displacements u, and u, rather that u, and u, are zero along (r =7y, —¢ < z < ¢). Thus, the
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solution of (36) must satisfy a set of single-valuedness conditions which may then be used to
determine the arbitrary constants resulting from the general solution. These conditjons may
be expressed by fixing u, and u, at any point along theline of integration, say, for example
at z =0, giving

ur(ro > 0) =0, uz(ro > 0) =0, (39 a,b)

where the expressions for u, and u, are given by (34).
Considering the symmetry of the problem, the solution of the system of singular integral
equations (36) subject to the conditions (39) is of the following form [6]:

R(z) = F2)(c* = 2)7Y2,  Z(2) = G(2)(c* — )73, (40 a,b)

where F(z) = F(—z) and G(z) = —G(—~2z) are bounded functions which may easily be
obtained numerically (e.g. [7, 8]). Some numerical results obtained from (36) are shown in

12.0F

10.0

8.0

8.0

4.0

2.0

0.0

1 J. . ]
o] 0.2 04 0.6 0.8 1.0
Distance From Center -z/c

Fig. 2. Radial and axial contact stresses for a rigid filament.

Figs. 2-4. Figure 2 gives R(z) and Z(z) for v = 0.35, (¢/ry) = 10 and (c/ry) = 20. Figure 3
shows the effect of the Poisson’s ratio (v =0.2 and v = 0.35 used in the Figure roughly
correspond to a glass and an epoxy matrix, respectively). From the viewpoint of this study
aiming to simplify the filament model the important result is shown in Fig. 4. Here the body
force Z(z) (which, in this case is also the contact stress) is given as obtained from (36) with
and without neglecting R(z). It appears that for the practical range of ¢/r, ratios the effect
of neglecting R on Z will be negligible. Hence, for the remainder of this study the radial com-
ponent R(z) of the body force will be neglected.
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12.0F
Cc/lte=10
v=0.20
10.0 V=035 --—----
8of
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40}
3 —Z Z ’/’
=0 Go 5
""""" Riz)
0.0 ' ) ‘ -
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Distance From Center -z/¢

Fig. 3. The effect of Poisson’s ratio on the contact stresses for a rigid filament.

In the case of the elastic filament, in order to simplify the resulting system of integral
equations, in addition to neglecting the radial component R of the body force, it will be
assumed that the body force Z(r, F¢), (0 <r < ry) at the ends is uniformly distributed.
Again, the effect of this assumption will be local and will be negligible on the stresses in the
matrix in z = Q plane (and hence, on the stress intensity factor along the leading edge of the
crack when the crack problem is considered). Thus, the unknown quantities will be the
distributed body force Z(r,, z), (—c < z < ¢) and the constant Z(r, ¢) =p = —Z(r, —¢).
These quantities will be determined from the integral equation and the algebraic equation
obtained by matching the displacements of the matrix and the auxiliary filament (with
elastic constants E, = E; — E and v) along the surface (r =r,, —c <z <c) and at an
appropriate point at the end z = ¢ (which will be selected as r =0, z = ¢).

Due to the large length-to-diameter ratio ¢/rg , the filament will be approximated by a one-

2
dimensional body subjected to body forces — - Z(z) distributed uniformly over the cross-
0

section (0 < r < r,, z) and the end tractions —p distributed again uniformly over the ends
z = Fec. Thus, the displacement in the filament may be expressed as

pz 2 z < i
U = —up(=2) = - e e [ar[zman,  ©<z<o, @D
2
upe) = — E,—E [pc i fotz(z)dt] : (42)
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Fig. 4. The effect of the radial body force on the axial contact stress in a rigid filament.
Evaluating now the displacements u,(r,, ), (—c < z < ¢) and u,(0, ¢) in the matrix due to

the body forces Z(ry, 1), (—c <t <c)and Z(r, ¢) = ~Z(r, ~c) =p, (0 <r <ry), and the
traction at infinity ¢,, = ¢, we obtain

o, )= 225+ [ Kooz, 02(0) dt = 4pIML(2) — Ny(2)

+9{(c + 2’My(2) — (¢ — 2)*N,(2)}],
y(c —t)? ) Z(t) dt

u,(0, ¢) = E;’E_C + 27r A f (c + +21AC, pc,  (43a,b)

rg +(c— 02 [r§ + (c — 1)*]*2
where
;= 1 ’ A=(1+v)(3-—4v)’
3—4v 8nE(l —v)
o 1 1
C, = o _ 24.2y1/2 -,
=2+ - 4+ r§fc5)* + 4))(—-——(4 )T 2) (44)

ro 2r de

Mi = d T s

@ fo el fo [7? + rd — 2rrg cos 0 + (¢ + z)2]* - D2
2n dé

(i=1,2,..),
(45a,b)

Niz) = jor dr fo

[#* + 13 — 2rry cos 6 + (¢ — z)¥]@-D/2°
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and K3, is given by (32c). Again, differentiating (41) and (43a) and using (42 and 43b), from
the conditions of continuity of the displacements we find

¢ Z(t) dt < 2C1E I
J.C_ f 2 +f_ck22(z, HZ(1) dr + m LZ(I) d:
p| 2C,E
+§[k2(2)+Ef—1E] =—Ci0,, (—c<z<o),
i 2C,E € C,E
k\(DZ(t)dt + ————— | 1Z ( , ! = —
f_c {(DZ(1) +r0(th 3 fot (dt + pc ‘Cz +E,_ E) C,coy, (46a,b)

where
(1 —v)
LT +v3E =4y

the kernel k,,(z, t) is given by (37c) and

B nry (c—1)?
k@ = [ré + (c — *]'/? (1 " (3 — 4§ + (c— t)z]) ’

k@ = (1= 775 e+ 2M00) + e — DN(2)]

+ 3[(c + 2> M;3(2) + (c — 2)>N,;(2)]. (47a,b)

The functions M; and N, appearing in (47b) are defined by (45). Some simplifications for the
evaluation of these functions may be found in Appendix B.

The integral equation (46a) and the algebraic equation (46b) determine the function Z(z)
and the constant p. Noting thatat z = 0 K, is an even function of ¢, from (43a, 45 and 41) it
is seen that the single-valuedness condition u,(ry, 0) — u.,(0) =0 will be automatically
satisfied provided the solution of (46) is restricted to a class of odd functions (as required by
the symmetry of the problem), i.e. Z(f) = —Z(—1t),(—c¢ <t < ¢)and Z(r, ¢) =p = —Z(r, —c),
(0 < r < ry). The numerical solution of (46) may again be obtained in a straightforward way
[7, 81.

Once Z(z) and p are obtained all the desired field quantities may be evaluated in terms of
definite integrals having the related Green’s functions as kernels and Z and p as density
functions. In fracture studies, of particular interest are the contact shear 6,%(r,, z) along the
filament-matrix interface and the axial stress ¢,.(z) in the filament. The general expression
for the contact stress is given by (24), which in this case becomes

+ — Ef ‘
700, 2) = = L5 200, (48)

The general expression for the stresses in the filament is given by (27), namely
o’fzz(") Z) = O-zz(ra Z) + aazz(z)3 (0 S r< rO s lZl < C)’ (49)

where o, is the stress in the matrix due to the external loads o, Z(2), and p, and 6,,, is the
axial stress in the auxiliary filament which has the elastic constants E, = E; — F and v.
6,, appearing in (49) may be obtained by adding ¢, to the stress component g, evaluated
from (29) and the related stress-displacement relations. Here, since r, is relatively very small
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and since the auxiliary filament is approximated by a one-dimensional bar, the r-dependence of
g, will be neglected and it will be represented by its value at r = 0. The stress in the auxiliary
filament may easily be obtained from (41) as

2 c
0ur(d) = —p— = | Z()dt. (50)
Fo vz
Thus, after some manipulations the axial stress in the filament is found to be

07.:(2) = G0 — Phy(2) — ;2; j Z(1) dt + fjchz(z, NZ(ndt, (O0<z<o), (51

where
1 c—z c+z
1) =375 |0 2= e )
(c —2)? (c+2)° ]
rs +(c — 2°P?  [rd + (c+2)°T2)"

rolt — 2) [1
31— v)[rg +(t — 222
The results of a numerical example giving the filament stress are shown in Figs. 5 and 6.
Figure 5 shows 6 ,,(z) for various combinations of ¢/r, and E ¢/E.

— v+ (52a,b)

Y
ho(z, 1) = 30— 2) ]

ré +(t — z)*

25.0L ¢/r=10 E¢/E =100

20.0+

c/r,=50 Ef/E ={0
-

10.0

c/t=I0 E¢/E=I0

0.0 1

i 1
0 0.2 04 0.6 0.8 1.0

Distance From Center- z/¢

Fig. 5. Axial stress in an elastic filament.
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Fig. 6. The effect of end tractions p on the axial stress in an elastic filament,

For large c/r, ratios it is reasonable to expect that the relative contribution of the end
tractions p (particularly away from the ends) would be negligible. Figure 6 shows the results
obtained with and without ignoring the effect of p for various combinations of ¢/r, and
E|E. It is clear from the figure that, in future calculations regarding the application of the
filament model developed in this paper, the effect of the end tractions may indeed be ignored.

4. COMPARISON WITH OTHER MODELS

Two other possible models for an elastic filament are the ellipsoidal inclusion considered
in [1] and the model discussed in [2]. The solution given in [1] is in closed form where it is
shown that the stress state in the inclusion is uniform. The expression for the stresses are
rather lengthy and will not be presented in this paper}. The calculated results for the stresses
6,, = 0gp and &, in the inclusion (filament) which is in the form of an ellipsoid with the
semi-axes (¢, rg, I'g) are shown in Figs. 7 and 8. Figure 9 shows the comparison of the maxi-
mum filament stresses o ,.,(0) obtained from the ellipsoidal inclusion solution and from the

+ The details may be found in [9].
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100f 5
E=5x10
V=35 E,/ £ =100
80F V=20
6ot
Oj z
Ziz E,/E=50
40t
o0l E,/E =20
L E/E-10
o 1 1 1 1

0 20 40 60 80 100
c/T,

Fig. 7. The axial stress in an elastic ellipsoidal inclusion [1].

0 20 40 60 80 100

-20-

Fig. 8. The radial stress in an elastic ellipsoidal inclusion.

elastic filament model given in the previous section, equation (51). The agreement appears
to be quite good for lower values of E,/E and acceptable for higher E/E.

Following the procedure outlined in [2] the filament problem considered in this paper may
be reduced to a Fredholm-type integral equation of the second kind with a logarithmic
singularity. In this model the body force Z(z) acting on the matrix is assumed to be distributed
uniformly over the cross-section (z = constant, 0 < r <r,) and the integral equation is
obtained by matching the strains ¢,, in the matrix and in the auxiliary filamentt (which
is also assumed to be a one-dimensional bar). The calculated filament stresses obtained from
this model for various combinations of c/r, and E,/E are shown in Fig. 10. Figure 11 shows

the comparison of the filament stresses obtained from the models given in [l 2], and from
that described in this paper.

t The details of the derivation of the integral equation and the solution may be found in [9].
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Fig. 9. Comparison of the (maximum) axial stresses in an elastic ellipsoidal inclusion and
in an elastic filament.
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Fig. 10. Axial stress in an elastic inclusion calculated from the model of Ref. [2].
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Fig. 11. Comparison of the axial stresses obtained from three different filament models.

5. THE CASE OF MULTIPLE FILAMENTS

The application of the filament model developed in Section 3 of this paper to problems
involving multiple filaments is straightforward provided the distance between any two
filaments is sufficiently large compared to r;, (i = 1, ..., N) (r; being the radius of the ith
filament) so that the variation of the body force Z,(r;, z), (i =1, ..., N) along the circum-
ference of the filament may be neglected. In this case the problem may easily be shown to
reduce to a system of N singular integral equations in the unknown functions Z,(z),
(i =1, ..., N) which may be solved numerically in a routine way [7, 8]. In particular, if the
filaments are identical and are located symmetrically the problem may be simplified con-
siderably. This is the case where r;, =+ =ry=ry, ¢c; =" =cy =¢, z=01is a plane of
symmetry for all filaments (which are parallel to the z-axis), the filaments are evenly spaced
on a circle of radius b on z = 0 plane, and the matrix is again subjected to a uniaxial stress
o, parallel to the z-axis and away from the filament region (see the insert in Fig. 12). For
this special case because of symmetry Z,(z) =+ =Zy(z) = Z(z)and p, =+ = py = pand
hence the problem reduces to a single integral equation and a single algebraic equation in
Z and p. Referring to Section 3 of this paper, after some simple manipulations we find

< Z(rydr | © 2C,E (¢
f_c P + f_cmzz(z, I)Z(I) d: + m J;Z(t) dt
)/ 2C,E
+5[m2(2)+Ef—lE] = —Ci04, (~c<z<o),

‘ 2C,E ¢ C.E
HZ(t) dt + ——1— £ )
[ moz0 s 2o [z o pca 1 595) = —Cueon, (5300
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Myx(z, 1) = kys(z, 1) + mro(t — Z)Z m

X [1 -2y + ‘——3))0 — Z)Z) ]

d? +(t — z)?

N . 3y(c — z)?
my(2) = ko(2) + mrg z [d2+(6c 22)2]3/2 (1—2v+ﬁ(‘c—_z—)z)‘5)

. c+z (1_ 3y(c+z)2)
[d? + (c — 2)*]?? Y d? +(c +2)*]}’

N 1 AT
ml(z) = kl(z) + nro ; l: dz +(C 2)2]1/2 (1 + dlzy_(:(c i)Z)Z):I ?

_e, s [ ! & ¢
G=C3z2, (4 + d}jcH)'V? (1 Ti d?/cz) - 3,] ’
_ 47(1 —v)
T A 4nGE -4y
d; = b{2[1 — cos(2n{i — 1}/N)}*/3,  (i=2,...,N), (54 a-f)

where r,, ¢ are the dimensions and E is the Young’s modulus of the filaments, F and v
are the elastic constants of the matrix, k,(z) and k,(z) are given by (47), C, and y are given
by (44), k,,(z, t) is given by (37 ¢), Z(z) is the unknown body force along the filament-matrix
interface (r =rgy, |2z| < ¢), and p is the uniformly distributed body force applied to the ends
O<r<ry,z=Fo).

Some of the numerical results obtained from the solution of (53) are given by Figs. 12-14.
Figure 12 shows the distribution of the axial stress in two symmetrically located filaments,
where again the problem is solved with and without taking the end effect p into account. In

10k
E./E=10
8+ v =35
/=50
i ¢/b=10
Ofzz.
[
4}
End Effects:Included ———
ol Neglected =====-
O I 1 i 1 j

(e} 02 04 06 08 10
Distance ‘From Center -2z/c

Fig. 12. The axial stress in two identical filaments obtained with and without including the
effect of the end tractions p.
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Fig. 13. The effect of the length-to-diameter ratio, and the distance between, two identical
filaments on the axial filament stress.
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Fig. 14. The ratio of the maximum filament stress for N> 1 to that for N=1 as a function
of the distance parameter b and the modulus ratio E,/E.
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this example, the effect of p is seen to be quite insignificant. Again, for N = 2, the effect of
length-to-diameter ratio and spacing of the filaments are shown in Fig. 13. Note that as
the distance b between the filaments decreases the axial stress in the filaments also decreases.
Figure 14 shows the ratio of the maximum filament stress (which is at z =0) for N > | to
that for N =1 as a function of the distance parameter b (see insert in Fig. 12) (Fig. 14a),
and as a function of modulus ratio £,/E (Fig. 14b). As expected, the interaction effect in-
creases with increasing N and increasing £ /E.
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APPENDIX A
Integrals used in the derivation of the kernels K;, (i, j = 1, 2) given by (32):

p? = 2r¥1 —cosa) + (1 — 2)%, (A.1)
2% do 4K(k) 5 4r3
g , =—— A2
Jo o [4ri+ (-2} 4rd +(t — z)? (A2)
2 cos a da 4K (k) (t— 2)2) 2, 211
= ——=[4 t— 2E(k), (A.
fO p [47.% + (t _ 2)2]1/2 (1 27“(2) ’ rg[ To +( Z) ] ( ) ( 3)
27 do 4E(k)
— = ’ A4
R e v e (A4
2n (1 — cos a) da
= K(k) — E(k)], A5
0 p3 r(?;[4rg —+-(t . 2)2]1/2[ ( ) ( )] ( )
27 (1 — cos a)* do 2[2r + (1 — 2)%] 2t —z)?
= E(k) — K(k). (A.6
J, == A T = O T ey O (A0
APPENDIX B
Simplified expressions for the functions M,(z) and N(z) given by (45):
Note that
dN; .
WD @i 1) - N2
dM—i(z) = —Qi — D(c+ 2)M;(2)- (B.1a,b)

dz
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Also )
o [r? +rZ—2rrgcos 8 +(c+ 2)2112  [(r + ro)* + (c + 2)°]?
k2 4rrq

} T e+ P+ (k2

where the upper and lower indexes in the modulus k correspond to the upper and lower signs
in (¢ + z). Thus,

_ 0 rK(ky) dr
MO =4 | G+ e
(" rK(k,) dr
M@ =4[ e (B.3a,b)
Mz(Z)} 4 J.ro rE(k;) dr
Na(2) o [(r+19)? +(c £ 2)*1[(rg — 1)* +(c £ 2)*]
M3(z); _4gr rdr
Ny@ 3o [(ro +1)* + (¢ £ 271" [(ro — N* + (¢ £ 2)°]
—K(ky) 1 1
2
{(r0 +7)? +(c+2)? + ZE(ki) [(ro +7r)? +(c+2)? + (ro—r)?*+(c+ z)z] }
(B.4a,b)

Pestome — Hactosmas paGora MOCBAIEHA BOMPOCY 3MaCTOCTATMKH TPEIIMHHI B (opme
EHHU B yOpyrofl MaTpHIE, KOTOpas YCHIEHA JaCTHYHLIMH HUTAMHE UITH BOJIOKHAMH, pac-
MOJIOKEHHBIMU NEPICHANKYIAPHO K IUIOCKOCTH TpelMHBL. B mepBoil pabote paspaboranu
MOZEIb JIACTHYHBIX BOJIOKOH. BO BTOPO# -— pacCMaTPHBAIOT BOIPOC IPHMEHEHHS MOJIEITH 110
OTHOLICHHIO K TNEHHHOOPA3HOU TpEIIMHE BOKPYT KOTOPOH CHMMETPHYHO pacupelelecHbl
BOJIOKHa OTpaHMYeHHOM MmdHbl. BONpoC yCHIeHHMs TpeCHyBINE MATPHLB 3MACTHYHBIMH
BOJIOKHAMHU Pa3HYHOTO AHAMETPA, MOJYNIeH H OTHOCHTENBHOTO MECTOTIOIOKEHHS PAacCMAaTPH-
BaroT B TpeTheil paboTte. Tak kak ITTaBHBIM HHTEpEC IPECTABIAET MPUMEHEHHE PE3YIILTATOB IO
OTHOIUEHHIO K UCCIEJOBAHNAM, OTHOCAIUMCS K Pa3phIBY BOJIOKHA WITH HHTEH, TO HCCIIENOBa-
HHUe OyZeT npexie BCero KacaThCs pacieTa Gakropa HHTEHCMBHOCTH HAPSHKEHHS Ha Tiepude-
PHMH TpEUIWHbI, BHYTPEHHUX HANDPSDKCHUA B BOJNIOKHE HIM HHUTAX, W TPAHMYHON CHNBI TPEHHS
MEXIY MATPHUEH U BOJOKHAMHM WA HUTSAMH,



