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Abstract-This study deals with the elastostatic problem of a penny-shaped crack in an elastic
matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An
elastic filament model is developed in the first paper. The second paper considers the applica
tion of the model to the penny-shaped crack problem in which the filaments of finite length are
symmetrically distributed around the crack. The reinforcement problem for the cracked matrix
with elastic fibers of different diameter, modulus, and relative location is considered in the third
paper. Since the primary interest is in the application of the results to studies relating to the
fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis
of the study will be on the evaluation of the stress intensity factor along the periphery of the
crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the
filaments or fibers.

1. INTRODUCTION

The primary objective of this series of papers is to develop a technique by which, with a
reasonable amount of computational effort, one may obtain the solution of the three
dimensional elasticity problem for a matrix containing a penny-shaped crack and reinforced
by elastic filaments or fibers perpendicular to the plane of the crack. Basically, the problem
is one of interaction between a macroscopic crack and filaments or fibers in a composite
medium. The problem finds its practical applications in the fracture studies of fiber or
filament reinforced composites and in reinforced concrete. Even though the existence of
such a crack has an effect on the vibration characteristics, the stiffness, and other mechanical
properties of the material, its main importance lies in the reduction it causes in the fracture
resistance of the structure. Hence, our primary attention will be concentrated on the calcula
tion of such quantities as the distribution of the stress intensity factor along the periphery of
the crack, the filament-matrix shear stress and the maximum tensile stress in the filaments.

This first paper in the series will be devoted to the development of a model for an elastic
filament imbedded into an elastic matrix. The main requirements expected of the model are a
sufficiently accurate representation of the filament, and its applicability to the interaction
problems involving a cracked elastic continuum with multi-filament reinforcements. For a
sparsely reinforced matrix in which the interaction between the perturbed stress fields of the
isolated filaments and the crack is negligible, the solution given in [1] for an ellipsoidal
inclusion in an infinite matrix may be quite satisfactory provided the filament ends are
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rounded and there is no excessive concentration of interface shear. However, since the
filaments are usually cylindrical with sharp edges and since the technique described in [I]
cannot readily be expanded to interaction problems, the ellipsoidal inclusion model of [I J
is not suitable for the problem under consideration. A somewhat more appropriate model
for the present purpose would be that described in [2]. The model described in [2] would
give sufficiently accurate results for the tensile stress in the filament and for the stiffening
effect on the crack. However, its representation of the filament-matrix contact stresses
would not be sufficiently accurate. Partly for this reason and partly for reasom; of con
venience in solving the resulting integral equations, in this paper a somewhat different model
will be developed. The technique is based on a direct generalization of the notlOllS discussed
in [3, 4], and will be described in the next sectioll. Some numerical examples will then be
given and the results will be compared with those obtained from using the method, of
[1,2].

2. SOLUTION OF THE GENERAL INCLUSION PROBLEM

Consider the three-dimensional inclusion problem shown in Fig. I. Let the homogeneous,
isotropic elastic domains D k (the inclusions) which are bounded by nonintersecting smooth
surfaces Sk, (k = I, 2, ... , m) be perfectly bonded to the surrounding elastic medium Do
(the matrix). Let the bounding surface So of Do be subjected to surface tractions Tro (where
So may be finite or infinite). Let the elastic constants of Dk be Ilk' )'k' (k = O. I, .... 111). The
problem may be formulated by writing the field equations for Dk separately with the
boundary conditions on So and stress and displacement continuity conditions on S l' • Sm'
This, however, requires the solution of an elasticity problem for the simple domains D, ...
Dm as well as for the multiply-connected domain Do. The problem may also be considered as

Fig. 1. General inclusion geometry.

that of a simply-connected nonhomogeneous domain in which the elastic constants have
jump discontinuities along the surfaces S1, ... , Sm' This formulation requires the solution
of a problem in which the field equations have discontinuous coefficients. Aside from the
special case discussed in [1], neither one of these solutions is tractable. However, it can be
shown that the problem may be reduced to the solution of a system of integral equations
provided the Poisson's ratios of the elastic domains Do, D), ... , Dm are assumed to be
equal. For certain geometries these integral equations may be solved numerically without
any difficulty.

Let D and S be the union of inclusion domains and their boundaries, respectively, i.e.

m

D = I Dk ,
1

m

S = I Sk'
1

( I )
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Let Ub U2' u3 be the components of the displacement vector in the nonhomogeneous medium
(Do + D + S). In the absence of body forces, the elastostatic boundary value problem may
be formulated as

flUi, jj + (A + fl)Uj , ji = 0, (xj E (D + S + Do)),

(Jijn~ = ItO, (xj E So),

(Jij = fl(Ui,j + uj,J + AUk,k(jij, (i,j = 1,2,3),

where the discontinuous elastic constants are given by

(2)

(3)

(4)

Il=flr' (X j E D" r = 0, 1, ... , m), (5)

(6)

(7)

(9a,b)

n~ is the outward normal and Tro is the traction vector on So . In (2-4) as well as in the rest
of this paper the usual summation convention is used. Let

fl = flo + Afl, A= Ao + AA;

Afl = flr - flo, AA = Ar - Ao, (xj ED" r = 1, ... , m),

where Afl and AA are assumed to be nonzero. With (6), (2) may be expressed as

flo Uj, jj + (Ao + flo)Uj, ji + [AflU i, jj + (AA + Afl)Uj , j;] = 0,

(xj E (Do + D + S); i = 1, 2, 3). (8)

In (8) the quantity in brackets may be considered as a body force vector which, due to the
discontinuous nature of the coefficients Aand fl, is expected to be discontinuous across and
at the boundary S. Let I] = I](x), (x j E S) be the distance along the normal n measured (in
outward direction) from the surface S. We may then define

AflUi,jj + (AA + Aj1)Uj ,ji = F[(x), (Xj ED + S)

P = {Fi(X), (Xj ED),
, TNx)(j(I] - 0), (X j E S),

where, in general, Tt is not equal to the boundary value F i- • Using (9), (8) may now be
expressed as

(Xj E (Do + D + S), i = 1,2,3). (10)

On the other hand if we let Fi(x) = Fr, (xj E Dr) and n(x) = Tr, (xj E Sr), (9) is
equivalent to

(X j E Sr),

(r = 1, ... , m; i,j = 1,2,3). (lla-c)

Equation (10) with (3 and 4), and (11) give the formulation of m + 1 elasticity problems for
the simply-connected homogeneous domains (Do + S + D), D 1 , ••• , D m • In addition to dis
placement components ui = u? in (Do + D + S) and ui in the auxiliary inclusions Dr with
the elastic constants All. and AAr , (r = 1, ... , m; i = 1, 2, 3), the equations contain the
unknown functions F[ and Tr, (r = 1, ... , m; i = 1, 2, 3). The additional equations to
account for these unknowns may be obtained by considering the fact that the displacements
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on S are continuous and ui given by (11) are identical to U i given by (9, 8, or 10), namely

u~(x) = u?(x), (xj E Dr).

u~(x) = u?(x). (x) E Sr), (1' = I, ... , m; i = 1,2,3). (I2a,b)

Formally, 9m + 3 unknown functions u?, ui, Ft, T( may be obtained from 9m + 3 equa
tions given by (1O, Iia and 12) under the boundary conditions (3) (with 4) and (lIb with
lIe). If the Green's functions for the domains (Do + D + S) (i.e. the simply connected
region bounded by So) and Sr' (1' = I, ... , m) are known, this system of equations may
easily be replaced by a system of 6m integral equations for the unknown functions Ft and
T(, (i = I, 2, 3; l' = I, ... , m).

Let us now consider the field equations for the part Dr of the homogeneous medium
(Do + D + S) in which ui(x) = uf(xj ). This may be obtained from (10) as

(13)

( 14)

(X j E Dr; l' = 1, ... , m; i,l = 1,2,3),o ( lo) 0 1 rui • jj + 1 + - uj, ji + - F i = 0,
flo flo

subject to the boundary conditions that a ij nj = a?j- nj, (xj E Sr) where a?j- is the limit of the
stress component obtained from the solution of (10) as x j approaches the boundary Sr from
inside. From (13), (1la) and (12b) it is easily seen that

(
/'0 L1A.r) 0 ( 1 I )--- u· .. + -+- £'=0
flo L1flr 10 JI flo L1fl 1 ,

From (14) it then follows that

F~ == 0, if Vr = Vo ' (X j E Dr; l' = 1, ... , m; i = 1, 2, 3), (15)

where Vs is the Poisson's ratio of the elastic region D" (s = 0, I, "" m). Thus, with the
assumption that Vr = Vo , (1' = I, ... , m) the formulation of the problem may be considerably
simplified and may be summarized as

m

flo fl~ jj + (..1.0 + f.1o)u j. ji + I T( b(r( - 0) = 0,
r~l

(X j E (Do + D + S)),

[ ( 0 . 0) , 0 SO] 0 Tnoflo Ui,j + Uj,i + AoUk,k Uij nj = i ,

L1flr ui. jj + (L1A.r + L1flr)uj, ji = 0, (xj E Dr),

[L1flr(U~, j + uj. i) + L1lr U~, k bij]nj = - T(, (Xj E Sr),

U~(X) = U?(X), (Xj E Sr), (1' = I, ... , m; i,l = 1,2,3).

(l7a,b)

(18)

Again, if the Green's functions for the regions D], ... , Dm for a concentrated stress vector
on the boundary and for (Do + D + S) for a concentrated internal body force are known,
(18) directly gives a system of two-dimensional integral equations for the unknown func
tions Tt, (i = 1, 2, 3; r = I, ... , m).

In the study of the mechanics of composite materials an important quantity of interest is
the magnitude of the contact stresses on the interfaces S1, ..• , Sm . Once the layers of body
forces Tt, (r = 1, ... , m) are determined, the contact stresses may easily be obtained from
the equilibrium considerations along the boundaries SI' ... , Sm' Let 'i = aijnj be the
components of the stress vector on the internal surface S, (S = IT Sr) having the normal
(n;), (i, j = I, 2, 3). Let ,~ be the components of the contact stress vector on the interface Sr
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having the outward normal n~. It is clear that

«Xj) = r?+(x) = cr?k+(x)nk(x), (x j E S'), (19)

where the superscripts + and - refer to the boundary values of the related quantities as
the surface sr is approached from outside (the positive side) and from inside (the negative
side), respectively. The equilibrium considerations for the homogeneous region (Do + D + S)
subjected to the layer of body forcesT( on Sr, (r = I, ... , m) and surface tractions Troon
So require that

(xj E Sr; i = 1, 2, 3; r = 1, ... , m). (20)

Also, from the solution of the problem for the simply-connected domain Dr (see (17» we
have

(21)

(22)(X, E D" r = 1, ... , m),

On the other hand, if Vr = vo, (r = 1, ... , m), using the equality of the displacements in
D" u~(x) = u?(xj), (Xj ED" r = 1, ... , m), from the stress displacement relations it may
easily be shown that

-}- cr[ix/) = ~ cr~(x/),
ti/1r /10

or

(23)

Thus, from (19-21) and (23) the components of the contact stress vector on Sr may be
obtained as

«X) = r?+(x) = - _/1_r_ Tnx),
lir - lio

(x j ESr ;i,j=1,2,3;r=I, ... ,m). (24)

Once the problem for the m + 1 simply-connected domains is solved, noting that the
displacement components U i , (i = 1, 2, 3) in the actual inclusion with elastic constants A

r
and lir are given by

U;(X) = u?(x) = u~(x), (Xj E Dr; i,j = 1, 2, 3; r = 1, ... , m), (25)

(26)

and (because of Vr = vo , (r = 1, ... , m»

Ar ,10 dAr
-=-=-
lir lio d/1r

the stresses in the actual inclusion may be expressed as

OOij(x/) = /lr(ui,j + uj ,;) + ArUk ,k i5 ij

= cr?iXI) + OO[j(x/), (Xl E Dr; r = 1, ... , m; i,j, I = 1,2,3), (27)

where OO?j' (i,j = 1, 2, 3) are the stress components in the matrix (Do + D + S) which has
the elastic constants lio , ,10 , and aiJ' (i, j = 1, 2, 3) are the stress components in the auxiliary
inclusion Dr with the elastic constants d/1" dA" (r = 1, ... , m).
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Note 1. The results found in this section remain valid for the plane and axisymmetric
problems, with the additional simplification that for Vr = vo , (r = 1, m) the resulting
integral equations for the unknown functions T(, (i = 1,2; r = I, , m) would be one-
dimensional.

Note 2. In the corresponding" antiplane shear" problem

Uz = 0= U3' U 1 • 1 = 0, T/ =0, (j = 2,3), (28)

and the results found in this section regarding the vanishing of the body forces F~ remain
valid without any restriction on the elastic constants flr (r = 0, I, ... , m). In this case
(16-18) and (24) (with (25)) give the exact solution. In this problem too the interface S,
may be represented by a closed plane curve and the resulting integral equations (for T~r,

r = I, ... , m) are one-dimensional, the arc length measured along Sr being the variable.

(29)(i=1,2,3),

3. THE FILAMENT MODEL

Let the filament be represented by a cylindrical inclusion of length 2e, radius ro , and the
elastic constants EJ , vJ' Let the elastic constants of the surrounding matrix be E, v. It is
assumed that

(a) vJ = v;
(b) the dimensions of the matrix are large in comparison with e;
(c) the external load is the traction (Jzz = (Jo applied to the matrix away from and parallel

to the filament; and
(d) the length of the filament, 2e, is large in comparison with its diameter 2ro . Thus, the

following basic relations for the infinite medium may be used in deriving the Green's
functions for the matrix [5]:

A B(x i - T;) 3
Ui = - Xi + 3 I (Xj - T)Xj ,

P P 1

3

pZ=I(Xi-TY,
1

(1 + v)(3 - 4v)
A= ,

8nE(1 - v)

I + v
B= ,

8nE(1 - v)
(30)

where Ui' (i = I, 2, 3) are the components of the displacement vector at the point Xi due to
the concentrated body forces, Xj acting at the point Tj , (j = I, 2, 3), and Xi and Tj refer to
the rectangular coordinates. If we deal with an axisymmetric problem in which, referred to
the cylindrical coordinates r, e, z, the body forces R, 0, Z are distributed over a ring r = ro ,°~ e< 2n, Z = t in such a way that 0 = °and Rand Z are independent of e, integrating
over the ring, from (29) the displacement components at a point (r = ro , 0 ~ 0 < 2n, z) may
be obtained as

ur(ro, z) = Kll (z, t)R + K1Z(z, t)Z, Uo =0,
(31 a-c)

2A[ (l+y)(t-Z)Z]
Kll (z, t) = - 2ro + . K(k)

Po ro

_ 2A [po + 1... (2r6+ (t - zf)] E(k),
ro Po
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2A)I(t - z)
KuCz, t) = -KZ1 (z, t) = - [K(k) - E(k)],

Po

4AroKn(z, t) = - [K(k) + )lE(k)],
Po

791

(32a-c)

2rok=-,
Po

(33)

where K(k) and E(k) are complete elliptic integrals of the first and the second kind, respec
tively. A list of integrals used in the derivation of the kernels Kij' (i,.i = 1,2) may be found
in Appendix A. Similar expressions may be obtained for

ur(r, +c), uz(r, +c) due to R, Z at (ro, t),

ur(r, +c), uz(r, +c) due to R, Z at (s,' +~)

and

ur(ro, z), uz(ro, z) due to R, Z at (s, +c),

where

O~(r,s)<ro, -c«z,t)<c.

The filament model developed in this section will be used to study the stress state around
the leading edge of a penny-shaped crack in the matrix located in the z = °plane. Since
ro ~ c and since the body forces R are locally self-equilibrating, the direct effect of R on the
stress intensity factors along the crack periphery will be negligible. However, since the
integral equations in Rand Z will be coupled, the effect of R-Z may not be negligible. The
first example discussed in this section will be devoted to study the effect of neglecting R on
Z. For the sake of simplicity and in order to consider an extreme case, it will be assumed
that the inclusion is rigid and the end effects are negligible. Thus, if the uniaxial tension
azz = ao is the external load applied to the matrix away from the inclusion region (see the
insert in Fig. 2), from (31) the integral equations of the problem may be expressed by
writing the displacement components along (r = ro , -c < z < c) equal to zero as follows:

vroao IC

ur(ro, z) = - -- + [KlI (z, t)R(t) + KuCz, t)Z(t)] dt = 0.
E -c .

a 0 z IC

uz(ro , z) = - + [KZ1 (z, t)R(t) + Kn(z, t)Z(t)] dt = 0,
E -c

(-c<z<c), (34)

where K ij , (i,.i = 1, 2) are given by (32). A close examination of the kernels around z = t
would indicate that K ll and Kn have logarithmic singUlarities. This may be seen by observ
ing that at z = t E(k) is finite and for small values of It - zl we have the following asympto
tic relation:

K(k) = -logl t - zl + log 4po

1 (t - zf+ - --Z- [-logl t - zl + log 4po - 1] + ...
4 Po

(35)
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(36)

Since the system (34) is of the first kind, it is equivalent to a system of singular integral
equations. In order to extract the correct behavior of the solution, it would be simpler to-cast
the system in the standard form with Cauchy-type singularities by formally differentiating
the equations. Thus, separating the singular parts of the kernels, (34) becomes

c R(t) dt C 'I CI --+ I kll(z, t)R(t) dt - - I [log It - z I + k 12(z, t)]Z(t) dt = 0,
-c t - z -c 2ro -c

'I c c Z(t) dt
2r

o
Lpog1t - zl + k 12(z, t)]R(t)dt +t

c
~

I
c 41!(1 - V)O'o

+ _ck22(z, t)Z(t) dt = - (1 + v)(3 _ 4v)' (-e < z < e),

where y = 1((3 - 4v) and the bounded functions k ij , (i,j = 1, 2) are given by

k
ll

(z, t) = 2ro (OK(k) __1_) + 2ro - Po + (l + y)(t - Z)2 oK(k)
Po OZ t - z poet - z) roPo OZ

t - z (k) [2ro 2(1 + 'I) (1 + y)(t - Z)2]+--K -2 - + 2
Po Po ro ropo

1 oE(k) [ 'I 2 2 ]- - --", Po + - {2ro + (t - z) }
ro uZ Po

+ t - z E(k) [1 + 2'1 - '12 {2r6+ (t _ Z)2}] ,
roPo Po

'I
k 12 (z, t) = k 21 (Z, t) =-- (2ro - Po)log It - z I

2ropo

_1.- [K(k) + log It - z I] + 1.- E(k)
Po Po

+ yet ~ z) [K(k) _ E(k)] + yet - z) [OK(k) _ OE(k)] ,
Po Po OZ OZ

2ro [OK(k) 1] 2ro - Po 2ro(t - z) K(k)k 22(z, t) = - -- - -- + + 3
Po OZ t - z Po(t - z) Po

+ 2roY oE(k) + 2roY(~ - z) E(k),
Po DZ Po

(37a-c)

oK(k) = E(k) _ t -2 z K(k),
OZ t - z Po

DE(k) = t - z [E(k) _ K(k)],
DZ P6

k2 _ 4r6
- 4r6 + (t - Z)2

(38)

Referring to [6] it may be shown that the solutions of (36), Rand Z, have integrable
singularities at =Fe, the index of the system is K = 1, and hence the general solution will
contain two arbitrary constants. On the other hand (36) states that the z-derivatives of the
displacements Ur and Uz rather that Ur and Uz are zero along (r = ro , - e < z < e). Thus, the
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solution of (36) must satisfy a set of single-valuedness conditions which may then be used to
determine the arbitrary constants resulting from the general solution. These conditions may
be expressed by fixing Ur and Uz at any point along theline of integration, say, for example

at z = 0, giving

u,.(ro , 0) = 0, uz(ro , 0) = 0, (39 a,b)

where the expressions for Ur and Uz are given by (34).
Considering the symmetry of the problem, the solution of the system of singular integral

equations (36) subject to the conditions (39) is of the following form [6]:

(40 a,b)

where F(z) = F( -z) and G(z) = -G( -z) are bounded functions which may easily be
obtained numerically (e.g. [7, 8]). Some numerical results obtained from (36) are shown in
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Fig. 2. Radial and axial contact stresses for a rigid filament.

Figs. 2-4. Figure 2 gives R(z) and Z(z) for v = 0.35, (clro) = 10 and (clro) = 20. Figure 3
shows the effect of the Poisson's ratio (v = 0.2 and v = 0.35 used in the Figure roughly
correspond to a glass and an epoxy matrix, respectively). From the viewpoint of this study
aiming to simplify the filament model the important result is shown in Fig. 4. Here the body
force Z(z) (which, in this case is also the contact stress) is given as obtained from (36) with
and without neglecting R(z). It appears that for the practical range of clro ratios the effect
of neglecting R on Z will be negligible. Hence, for the remainder of this study the radial com
ponent R(z) of the body force will be neglected.
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Fig. 3. The effect of Poisson's ratio on the contact stresses for a rigid filament.

In the case of the elastic filament, in order to simplify the resulting system of integral
equations, in addition to neglecting the radial component R of the body force, it will be
assumed that the body force Z(r, += c), (0 ::;:; r < ro) at the ends is uniformly distributed.
Again, the effect of this assumption will be local and will be negligible on the stresses in the
matrix in z = 0 plane (and hence, on the stress intensity factor along the leading edge of the
crack when the crack problem is considered). Thus, the unknown quantities will be the
distributed body force Zero, z), (-c < Z < c) and the constant Z(r, c) =p = -Z(r, -c).
These quantities will be determined from the integral equation and the algebraic equation
obtained by matching the displacements of the matrix and the auxiliary filament (with
elastic constants Ea = Ef - E and v) along the surface (r = ro, -c < Z < c) and at an
appropriate point at the end z = c (which will be selected as r = 0, z = c).

Due to the large length-to-diameter ratio cjro, the filament will be approximated by a one
2

dimensional body subjected to body forces - - Z(z) distributed uniformly over the cross
ro

section (0 ::;; r < ro, z) and the end tractions -p distributed again uniformly over the ends
z = += c. Thus, the displacement in the filament may be expressed as

r 2 JZ JCuf.(z) = -uf / -z) = - E ~ E - (E E) dt Z(/7) d/7,
f - ro f - 0 t

1 [ 2 C ]ufz(c) = - -- pc + - I tZ(t) dt .
Ef-E ro 0

(O::;;z<c), (41)

(42)
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Fig. 4. The effect of the radial body force on the axial contact stress in a rigid filament.

Evaluating now the displacements uz(ro, z), ( - e < z < e) and uz(O, e) in the matrix due to
the body forces Z(ro , t), (-e < t < e) and Z(r, e) = -Z(r, -e) = p, (0 ~ r < ro), and the
traction at infinity azz = ao we obtain

a z fC
uz(ro , z) '= _0_ + K 2z(z, t)Z(t) dt - Ap[M l(Z) - N l(Z)

E -c

+ y{(e + Z)2M z(z) - (e - Z)2N 2(Z))],

aoe fC ( y(e - t)2) Z(t) dt
u.(O, e) = -E + 2rrroA e + 2 ( ? [2 ( )2]1 /2 + 2nAC2pe,

-c '0 + e - t ro + e - t

where

(43a,b)

(1 + v)(3 - 4v)
A= ,

8rrE(1 - v)

_'0 2 2 1/2 ( 1 1)
C2 - 2 + ~ - (4 + role) + 4y (4 + r51c2)1/2 -.2 ' (44)

fro f2" de
Mi(z) = 0 r dr 0 [,2 + '5 _ 2rro cos e+ (c + Z)2](2i 1)/2'

fro f 2" de
Ni(z) = 0 r dr 0 [,2 +'5 _ 2r,o cos e+ (c _ Z)2]<2i-1)/2' (i = 1,2, ...),

(45a,b)
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and K22 is given by (32c). Again, differentiating (41) and (43a) and using (42 and 43b), from
the conditions of continuity of the displacements we find

(-c < z < c),

I
c Z(t) dt c 2C E c
-- +I k 22(z, t)z(t) dt + 1 I Z(t) dt

c- t - z -c fo(Ef - E) z

P [. 2C 1E]
+2" k2(z)+E

f
_E =-C10'0,

I
c

2C E C (C E )
k 1(t)Z(t)dt+ (E 1_ )JtZ(t)dt+ PC.C2 +-

1
- =-C1cO'o,

-c '0 f E 0 Ef - E

where

C
1

= 4n(1 -v) ,

(l + v)(3 - 4v)

the kernel k22(z, t) is given by (37c) and

nf ( (c - t)2 )
k 1(t) = [r~ + (c ~ t)2]1 /2 1 + (3 _ 4v)[r~ + (c _ t)2] ,

kiz) = (1 -3~4J [(c + z)M2(z) + (c - z)N2 (z)]

+ 3[(c + Z)3M 3(z) + (c - z)3N3(z)].

(46a,b)

(47a,b)

(48)

The functions M i and N i appearing in (47b) are defined by (45). Some simplifications for the
evaluation of these functions may be found in Appendix B.

The integral equation (46a) and the algebraic equation (46b) determine the function Z(z)
and the constantp. Noting that at z = 0 K 22 is an even function of t, from (43a, 45 and 41) it
is seen that the single-valuedness condition uzCro , 0) - ufzCO) = 0 will be automatically
satisfied provided the solution of (46) is restricted to a class of odd functions (as required by
the symmetry of the problem), i.e. Z(t) = -Z( - t), ( - c < t < c) and Z(r, c) =p = -Z(r, - c),
(0 ~ r < ro). The numerical solution of (46) may again be obtained in a straightforward way
[7, 8].

Once Z(z) and p are obtained all the desired field quantities may be evaluated in terms of
definite integrals having the related Green's functions as kernels and Z and p as density
functions. In fracture studies, of particular interest are the contact shear O':Z(fo, z) along the
filament-matrix interface and the axial stress 0'fZZ(z) in the filament. The general expression
for the contact stress is given by (24), which in this case becomes

+ Ef )
O'rz(rO, z) = - --- Z(z .

Ef-E

The general expression for the stresses in the filament is given by (27), namely

(O:::::r<ro, Izi <c), (49)

where O'zz is the stress in the matrix due to the external loads 0'0' Z(z), and p, and O'azz is the
axial stress in the auxiliary filament which has the elastic constants Ea = Ef - E and v.
O'zz appearing in (49) may be obtained by adding 0'0 to the stress component O'zz evaluated
from (29) and the related stress-displacement relations. Here, since f o is relatively very small
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and since the auxiliary filament is approximated by a one-dimensional bar, the r-dependence of
(Jzz will be neglected and it will be represented by its value at r = O. The stress in the auxiliary
filament may easily be obtained from (41) as

2 c

(Jazz(z) = - P - - f Z(t) dt.
ro z

Thus, after some manipulations the axial stress in the filament is found to be

(50)

where

2 c c

(Jfz/z) = (Jo - ph 1(z) - - JZ(t) dt + f hz(z, t)Z(t) dt,
'0 z -c

(O::s;; z < e), (51)

J _ 1 [_ (e-z e+z)
11(Z) - 4(1 _ v) (1 2v) [r~ + (e _ Z)2P /2 + [r~ + (e + Z)2P/2

(e - z? (e + Z)3 ]
+ [r~ + (e - Z)2]3 /2 + [r~ + (e + Z)2]3 /2 '

'ott - z) [ 3(t - Z)2 ]
hz(z, t) = 3(1 _ v)[,~ + (t _ Z)2p/2 1 - 2v + ,~ + (t _ Z)2 . (52a,b)

The results of a numerical example giving the filament stress are shown in Figs. 5 and 6.
Figure 5 shows (J fziz) for various combinations of elro and EfIE.

25.0 c/r.= 10 EflE =100

20.0

15.0

c/r;,=50 Ef/E=IO
10.0r----~--- _

c/r.=IO EflE =10

5.0

O.O':---:'---__--l-__.....L__-L__--l

o 0.2 0.4 0.6 0.8 1.0

Distance From Center - z Ic

Fig. 5. Axial stress in an elastic filament.
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Fig. 6. The effect of end tractions p on the axial stress in an elastic filament.

For large clro ratios it is reasonable to expect that the relative contribution of the end
tractions p (particularly away from the ends) would be negligible. Figure 6 shows the results
obtained with and without ignoring the effect of p for various combinations of clro and
EfIE. It is clear from the figure that, in future calculations regarding the application of the
filament model developed in this paper, the effect of the end tractions may indeed be ignored.

4. COMPARISON WITH OTHER MODELS

Two other possible models for an elastic filament are the ellipsoidal inclusion considered
in [I] and the model discussed in [2]. The solution given in [1] is in closed form where it is
shown that the stress state in the inclusion is uniform. The expression for the stresses are
rather lengthy and will not be presented in this papert. The calculated results for the stresses
Urr = U88 and Uzz in the inclusion (filament) which is in the form of an ellipsoid with the
semi-axes (c, ro , ro) are shown in Figs. 7 and 8. Figure 9 shows the comparison of the maxi
mum filament stresses U fzz(0) obtained from the ellipsoidal inclusion solution and from the

t The details may be found in [9].
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Fig. 7. The axial stress in an elastic ellipsoidal inclusion [1].
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Fig. 8. The radial stress in an elastic ellipsoidal inclusion.

elastic filament model given in the previous section, equation (51). The agreement appears
to be quite good for lower values of EjfE and acceptable for higher Ejf£.

Following the procedure outlined in [2] the filament problem considered in this paper may
be reduced to a Fredholm-type integr'al equation of the second kind with a logarithmic
singularity. In this model the body force Z(z) acting on the matrix is assumed to be distributed
uniformly over the cross-section (z = constant, 0 ~ r < ro) and the integral equation is
obtained by matching the strains 8zz in the matrix and in the auxiliary filamentt (which
is also assumed to be a one-dimensional bar). The calculated filament stresses obtained from
this model for various combinations of cjro and EjjE are shown in Fig. 10. Figure 11 shows
the comparison of the filament stresses obtained from the models given in [1 2], and from
that described in this paper.

t The details of the derivation of the integral equation and the solution may be found in [9].
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Fig. 9. Comparison of the (maximum) axial stresses in an elastic ellipsoidal inclusion and
in an elastic filament.
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Fig. 10. Axial stress in an elastic inclusion calculated from the model of Ref. [2].
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Fig. 11. Comparison of the axial stresses obtained from three different filament models.

5. THE CASE OF MULTIPLE FILAMENTS

The application of the filament model developed in Section 3 of this paper to problems
involving multiple filaments is straightforward provided the distance between any two
filaments is sufficiently large compared to r j , (i = 1, ... , N) (r j being the radius of the ith
filament) so that the variation of the body force Zj('j, z), (i = I, ... , N) along the circum
ference of the filament may be neglected. In this case the problem may easily be shown to
reduce to a system of N singular integral equations in the unknown functions Zj(z),
(i = 1, ... , N) which may be solved numerically in a routine way [7, 8]. In particular, if the
filaments are identical and are located symmetrically the problem may be simplified con
siderably. This is the case where '1 = .. , ='N = '0' C1 == .•• = CN = C, Z = 0 is a plane of
symmetry for all filaments (which are parallel to the z-axis), the filaments are evenly spaced
on a circle of radius b on z = 0 plane, and the matrix is again subjected to a uniaxial stress
0'0 parallel to the z-axis and away from the filament region (see the insert in Fig. 12). For
thisspecialcasebecauseofsymmetry Z l(z) ='" =ZN(Z) =Z(z)andpl = ... =PN =pand
hence the problem reduces to a single integral equation and a single algebraic equation in
Z and p. Referring to Section 3 of this paper, after some simple manipulations we find

(-c < z < c),

(53a,b)
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N 1
m22(z, t) = k22(z, t) + nro(t - z) L Z Z 31Z

i~Z [d i + (t - z) ]

x [1 _2 3y( t - z/ ]
Y + dZ ( )Z'

i + t - z

Z N [ e - z ( 3y(e - z)Z )
mz(z) = kz{z) + nroJz [df + (e _ Z)Z]3 IZ 1 - 2y + df + (c _ z)z

c + z ( 3y(e + Z)2 )]
+ [df + (c - Z)Z]3/Z 1 - Y + df + (c + Z)2 '

N [ 1 ( y(c - z)Z )]
m1(z) = k1(z) + nroi~Z [df + (c _ z)ZFIZ 1 + df + (c _ z)Z '

(54 a-f)(i = 2, ... , N),

4n(1 - v)
C 1 = (1 + v)(3 - 4v)'

di = b{2[1 - cos(2n{i - 1}jN)]}1/2,

where ro, c are the dimensions and EJ is the Young's modulus of the filaments, E and v
are the elastic constants of the matrix, k1(z) and kz(z) are given by (47), Cz and yare given
by (44), kzz(z, t) is given by (37 c), Z(z) is the unknown body force along the filament-matrix
interface (r = r0, Iz I < c), and p is the uniformly distributed body force applied to the ends
(O$;r<ro,z= =Fe).

Some of the numerical results obtained from the solution of (53) are given by Figs. 12-14.
Figure 12 shows the distribution of the axial stress in two symmetrically located filaments,
where again the problem is solved with and without taking the end effect p into account. In

10r---- _

6
Ojzz
a:;-

E f /E=10
8 IJ =.35

c/r.=50

c/b.= 10

4

End Effects: Included
2 Neglected

00 0.2 0.4 0.6 0.8 1.0
Di stance' From Center - Zlc

Fig. 12. The axial stress in two identical filaments obtained with and without including the
effect of the end tractions p.



A penny-shaped crack in a filament-reinforced matrix-I. The filament model 803

60

40

b= 10c

20 b=O,5c

00 0.2 0.4 06 0.8 1.0
Distance From Center _ ZIC

Fig. 13. The effect of the length-to-diameter ratio, and the distance between, two identical
filaments on the axial filament stress.
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Fig. 14. The ratio of the maximum filament stress for N> 1 to that for N = 1 as a function
of the distance parameter b and the modulus ratio E,/E.
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this example, the effect of p is seen to be quite insignificant. Again, for N = 2, the effect of
length-to-diameter ratio and spacing of the filaments are shown in Fig. 13. Note that as
the distance b between the filaments decreases the axial stress in the filaments also decreases.
Figure 14 shows the ratio of the maximum filament stress (which is at z = 0) for N > J to

that for N = 1 as a function of the distance parameter b (see insert in Fig. 12) (Fig. 14a),
and as a function of modulus ratio EIIE (Fig. 14b). As expected, the interaction effect in
creases with increasing N and increasing EIIE.
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APPENDIX A

Integrals used in the derivation of the kernels K jj , (i, j = I, 2) given by (32):

p2 = 2rW - cos ex) + (t - Z)2,

f
21t dex 4K(k) 2 4r~

a p=[4r~+(t-z)2F/2' k =4r~+(t-z)2'

f2
1t

cos ex dct = 4K(k) (1 (t - Z)2.) _ ~ [4r2 + (t _ Z)2]1/2E(k)
a p [4r~+(t_z)2]1/2 + 2r~ r~ 0 ,

21t dex 4E(k)

fa p3 = (t - z)2[4r~ + (t - z)2F/2'

f21t (1 - cos ex) dct = 2 [K(k) _ E(k)],
a p3 rU4r~ + (t - Z)2]1/2

f
21t (1 - cos ct)2 dct _ 2[2r~ + (t - Z)2] E k _ 2(t - Z)2 K k
a p3 - rU4r~ + (t - z)2F/2 () rU4r~ + (t - zfF/2 ().

APPENDIX B

Simplified expressions for the functions Mj(z) and Nj(z) given by (45):
Note that

dNj(z)
-- = (2i - l)(c - z)Ni+i(Z),

dz

(AI)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

dMj(z)
-- = -(2i - l)(c + z)Mi+i(Z).

dz
(B.1a,b)
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21< de 4K(ki)
J - (B.2)

o [r2 + r6 - 2rro cos e+ (c ± z)2F /2 - [(r + ro)2 + (c ± z)2]1 /2'

2 4rro
k~ = (ro + r)2 + (c ± Z)2'

where the upper and lower indexes in the modulus k correspond to the upper and lower signs
in (c ± z). Thus,

(B.3a,b)

(B.4a,b)

Pe310Me - HaCTOllIll,all pa60Ta rrOCBlIIlI,eHa Borrpocy :maCTOCTaTHKH TpeIll,HHbI B $opMe

rreHHH B yrrpyroil: MaTpHIIe, KOTopali YCHJIeHa :maCTH'IHbIMH HHTlIMH HJIH BOJIOKHaMH, pac

rrOJIO)KeHHbIMH rreprreH;:J;HKyJIliPHO K rrJIOCKOCTH TpeIll,HHbI. B rrepBoil: pa60Te palpa60TaJIH

MO;:J;eJIb :maCTH'IHbIX BOJIOKOH. Bo BTOPOil: - paCCMaTpHBalOT Borrpoc rrpHMeHeHHlI MO;:J;eJIH rro

OTHOIlIeHHlO K rreHHH06palHoil: TpeIll,HHe BOKpyr KOTOPOil: CHMMeTpH'lHO pacrrpe;:J;eJIeHbI

BOJIOKHa OrpaHH'IeHHoil: ;:J;JIHHbI. Borrpoc YCHJIeHHlI TpeCHYBilieil: MaTpHIJ;bI 3JIaCTH'lHbIMH

BOJIOKHaMH pa3JIH'lHOrO ;:J;HaMeTpa, MO;:J;YJIeil: H OTHOCHTeJIbHOrO MeCTOrrOJIO)KeHHjI paCCMaTpH

BalOT B TpeTbeil: pa6oTe. TaK KaK rJIaBHblil: HHTepec rrpe;:J;CTaBJilieT npHMeHeHHe pe3YJIbTaTOB rro

OTHOIlIeHHlO K HCCJIe;:J;OBaHHlIM, OTHOClIIlI,HMClI K pa3pbIBY BOJIOKHa HJIH HHTeil:, TO HCCJIe;:J;OBa

HHe 6Y;:J;eT rrpe)K;:J;e Bcero KaCaTbCJI paC'IeTa $aKTopa HHTeHCHBHOCTH HanpB)KeHHlI Ha rrepH$e

pHH TpeIll,HHbI, BHYTpeHHHX Harrpji)KeHHil: B BOJIOKHe HJIH HHTlIX, H rpaHH'IHoil: CHJIbI TpeHHlI

Me)K)J;y MaTpHIIeil: H BOJIOKHaMH HJIH HHTlIMH.


